Some results on Sgr A* from Silesia

- Alternative GR theories and observed flares from Sgr A^*
- Magnetosphere of Sgr A* & charged particle acceleration

Martin Kološ, Misbah Shahzadi, Arman Tursunov, Berenika Čermáková, Zdeněk Stuchlík, ...

Institute of Physics, Silesian University in Opava

Cologne-Prague-Brno meeting 2022, June 1-3

Section 1

Alternative GR theories and observed flares from Sgr A*

Three flares from Sgr A* (2018)

- hot-spot on geodesic orbit around BH
- distance and orbital periods known fit!
- test effects of non-GR theories
 we used all stationary, axisymmetric, and asymp. flat BH metric we can found

$$\Omega_{\phi}(r) = \frac{-g_{t\phi,r} \pm \sqrt{(g_{t\phi,r})^2 - g_{tt,r} \ g_{\phi\phi,r}}}{g_{\phi\phi,r}}$$

hot-spot orbital frequency is given by $g_{\alpha\beta}$ only

$$P = \left(\frac{2\pi}{60}\right) \left(\frac{GM}{c^3}\right) \frac{1}{\Omega_\phi}$$

Kerr metric is OK and well ... more data / decrease error? Restrictions on parameters of nonGR metric

• M Shahzadi, M Kološ, Z Stuchlík, Y Habib: Testing alternative theories of gravity by fitting the hot-spot data of Sgr A*, The European Physical Journal C, 82, 407 (2022)

Three flares from Sgr A* (2018)

- hot-spot on geodesic orbit around BH
- distance and orbital periods known fit!
- test effects of non-GR theories
 we used all stationary, axisymmetric, and asymp. flat BH metric we can found

$$\Omega_{\phi}(r) = \frac{-g_{t\phi,r} \pm \sqrt{(g_{t\phi,r})^2 - g_{tt,r} \ g_{\phi\phi,r}}}{g_{\phi\phi,r}}$$

hot-spot orbital frequency is given by $g_{\alpha\beta}$ only

$$P = \left(\frac{2\pi}{60}\right) \left(\frac{GM}{c^3}\right) \frac{1}{\Omega_\phi}$$

Kerr metric is OK and well ... more data / decrease error? Restrictions on parameters of nonGR metric

• M Shahzadi, M Kološ, Z Stuchlík, Y Habib: Testing alternative theories of gravity by fitting the hot-spot data of Sgr A*, The European Physical Journal C, 82, 407 (2022)

Three flares from Sgr A* (2018)

- ${\scriptstyle \bullet} \,$ hot-spot on geodesic orbit around BH
- distance and orbital periods known fit!
- test effects of non-GR theories
 we used all stationary, axisymmetric,
 and asymp. flat BH metric we can found

$$\Omega_{\phi}(r) = \frac{-g_{t\phi,r} \pm \sqrt{(g_{t\phi,r})^2 - g_{tt,r} \ g_{\phi\phi,r}}}{g_{\phi\phi,r}}$$

hot-spot orbital frequency is given by $g_{\alpha\beta}$ only

$$P = \left(\frac{2\pi}{60}\right) \left(\frac{GM}{c^3}\right) \frac{1}{\Omega_\phi}$$

Kerr metric is OK and well ... more data / decrease error? Restrictions on parameters of nonGR metric

• M Shahzadi, M Kološ, Z Stuchlík, Y Habib: Testing alternative theories of gravity by fitting the hot-spot data of Sgr A*, The European Physical Journal C, 82, 407 (2022)

Spacetime	Parameter	Johannsen-Psaltis	$\epsilon \in [-70, 20]$
KN	$\tilde{O} \in (0, 1, 70]$	Hartle-Thorne	$q_1 \in [-5.25, 27]$
Braneworld	$\hat{B} \subset [-8, 30, 2, 90]$	Kerr-Q	$q_0 \in [-2, 1]$
Dyonic	$\rho \in [-8.30, 2.90]$	Quasi-Kerr	$\tilde{\epsilon} \in [-35, 150]$
Dyonic	$Q_e \in (0, 1.04]$ $Q_m \in (0, 1.64]$	Accelerating-rotating	$\tilde{b} \in [-0.03, 0.03]$
Kerr-Taub-Nut	$n \in (0, 2.35]$	Kerr-Sen	$Q_K \in (0, 1.25]$
KN-Taub-Nut	$Q_n \in (0, 1.95].$	Born-Infeld	$Q_{\rm B} \in (0, 1.30],$
	$\tilde{n} \in (0, 2.45]$		$\beta \in (0,\infty)$
Dirty	$r_s \in (0, 24],$	Kalb-Ramond	$s \in (0, 1.65],$
	$\Delta r_{s} \in (0, \infty).$		$\Gamma \in (0, 4.05]$
	$\Delta M \in (0, 18]$	Gauss-Bonnet	$\alpha \in [-0.7, 0.47]$
BH in PFDM	$k \in [-1.50, 0.29]$	KRZ BH	$\eta \in [-12, 55]$
Cold DM halo	$B_c \in [3.50, \infty).$	Kerr-MOG	$\alpha_2 \in (0,\infty)$
	$\rho_{c} \in [0.002, 0.02]$	Kaluza-Klein	$\gamma \in [1.25, 7.95],$
Scalar field DM halo	$R_{\rm e} \in [2, 25].$		$b \in [1.25, 7.50]$
	$\rho_s \in (0, 0.0004]$	Weyl corrections	$ ilde{lpha}\in(-\infty,\infty)$,
Hayward in PFDM	$\tilde{k} \in [-1.50, 0.28].$		$\tilde{q} \in (0, 1.73]$
	$Q_{\rm h} \in (0, 2.90]$	Rastall	$N_{\rm s} \in (0, 0.10],$
BH in DM spike	$a_{1} \in (0, 0.05]$	C 1 1.1.1	$\psi \in (0, 0.12]$
Deformed BH in DM	$\tilde{\alpha} \in (0, 2.65]$	Charged-Weyl	$Q_w \in [5, 8.80]$
BH in quintessence	$\tilde{c} \in (0, 0.007]$	Conformal	$Q_c \in (0, 1.20],$
Bit in quintessence	$\tilde{\omega} \in [-0.84, -0.32]$		$\lambda_0 \in (0,\infty)$
Regular Bardeen	$a_2 \in (0, 2, 30]$	Einstein-Yang-Mills	$Q \in (0, 1.7],$
Regular ABG	$Q \in (0, 1.44]$		$\tilde{\lambda} \in (0, 70]$
Regular Hayward	$a \in (0, 3, 24]$	Hairy	$\alpha_0 \in (0, 1.90],$
itegalar hayward	[9 C (0, 0.24]		$\alpha_1 \in (0, 50]$

Section 2

Magnetosphere of Sgr A* & charged particle acceleration

Multimessenger era: Sgr A* black hole as PeVatron source

Observations of γ -ray photons from the Galactic Centre region showing acceleration of PeV particles: High Energy Stereoscopic System (H.E.S.S.) collaboration: Acceleration of PeV protons in the Galactic Centre, Nature 531, 476 (2016)

figure from: A.V.Plavin et al., The Astrophysical Journal, Volume 908, Issue 2, id.157 (2021) + my small update

Black hole magnetosphere

A) Black hole alone - BH own EM field

- no-hair theorem black hole have only three hairs: mass, spin, charge (electric / magnetic)
 monopole character of EM filed around BH
- \nexists of magnetic monopole, but plasma accretion \implies BH will have **split monopole** magnetic field

B) Black hole in plasma electromagnetic field around BH generated by accretion disk

Martin Kološ

Opava (Silesia) & Sgr A* BH

Cologne-Prague-Brno meeting 2022, June 1-3 8 / 12

Charged particle acceleration - magnetic Penrose process

 How to populate BH magnetosphere with charged particles (particle injection): neutral particle split - ionization or decay

• neutral particle (1)
$$\rightarrow$$
 charged (2) + (3)

 $p_{\alpha(1)} = p_{\alpha(2)} + qA_{\alpha} + p_{\alpha(3)} - qA_{\alpha}$

axial symmetry A_α = (A_t, 0, 0, A_φ)
A_t can change particle energy E = E/m

$$\mathcal{E} = -g_{t\alpha}u^{\alpha} + (q/m)A_t$$

• BH rotation $g_{t\phi}$: electric \leftrightarrow magnetic field

selective accretion

 \rightarrow BH with Wald charge $Q_{\rm W}=2aMB$

• M. Zajaček, A. Tursunov, A. Eckart, S. Britzen: *On the charge of the Galactic centre black hole*, MNRAS, 480, 4, 4408–4423 (2018) [arXiv:1808.07327]

Martin Kološ

Opava (Silesia) & Sgr A* BH

Testing Sgr A* black hole as PeVatron source (10^{15} eV p)

- available energy (BH rotation) \checkmark
- total flux (\sim accretion rate) \checkmark
- flux composition (mostly protons) \checkmark

Testing Sgr A* black hole as PeVatron source (10^{15}eV p)

Testing Sgr A* black hole as PeVatron source (10^{15}eV p) Energy []] 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2} 10^{0} 10^{3} • available energy (BH rotation) \checkmark $\sim E^{-2.7}$ • total flux (\sim accretion rate) \checkmark 10^{1} inergy flux [GeV/m² s sr] • flux composition (mostly protons) \checkmark Kne acceleration mechanism 10^{-3} one-shot acceleration model $\sim F^{-3.1}$ proton and $M_{\text{SgrA}} = 4.3 \times 10^6 \,\text{M}_{\odot}$ 10^{-3} $\mathcal{E} \sim \tilde{q}A_t = 5 \times 10^{15} \text{eV} \cdot \frac{B}{10\text{G}} \cdot \frac{M}{M_{\text{SerA}}}$ Ankle γ IRGE $\nu + \bar{\nu}$ 10^{-5} cosmic rays energy spectrum ? LHC power law with spectral index -2.7 10^{-7} GeV TeV PeV EeV Energy

Testing Sgr A* black hole as PeVatron source (10^{15} eV p)

- available energy (BH rotation) \checkmark
- total flux (\sim accretion rate) \checkmark
- flux composition (mostly protons) \checkmark
- acceleration mechanism \checkmark one-shot acceleration model proton and $M_{\rm SgrA} = 4.3 \times 10^6 \, {\rm M}_{\odot}$

$$\mathcal{E} \sim \tilde{q}A_t = 5 \times 10^{15} \text{eV} \cdot \frac{B}{10\text{G}} \cdot \frac{M}{M_{\text{SgrA}}}$$

 cosmic rays energy spectrum ? power law with spectral index -2.7 charged particles initial distribution: -1.3 (accretion disk surface) -3 (region above disk)

(preliminary) PeV proton propagation from Sgr A* to Earth toy model: Sgr A* BH - isotropic source shooting protons with 50 PeV energy

(Berenika Čermáková) Study the propagation of PeV protons (ions) using CRPropa = simulation framework for charged particle propagation through an (extra)galactic environment https://crpropa.desy.de/

Summary & we are working...

- Sgr A* BH is PeVatron can accelerate protons to 10^{15} eV (or more if you increase mag. field)
- Propagation of PeV protons (ions) Sgr A* to Earth
- realistic BH magnetosphere (Sgr A*)
 & radiating charged particle dynamic

Thank you for your attention

• M. Shahzadi, M. Kološ, Z. Stuchlík, Y. Habib: *Testing alternative theories of gravity by fitting the hot-spot data of Sgr A**, EPJC, 82, 407 (2022) [arXiv:2201.04442]

• A. Tursunov, M. Kološ, Z. Stuchlík: Constraints on Cosmic Ray Acceleration Capabilities of Black Holes in X-ray Binaries and Active Galactic Nuclei, Symmetry 14 (3), 482 (2022)