Hierarchical four-body dynamics in post-Newtonian regime

Ladislav Šubr & Myank Singhal Astronomical institute, Charles University

Motion in Keplerian potential

Shape of the orbit:

- semi-major axis, a
- eccentricity, e

Orientation of the orbital plane:

- inclination, $i \in (0^\circ, 180^\circ)$
- longitude of the ascending node, $\Omega \in (0^\circ, \, 360^\circ)$

Orientation and position within the orbital plane:

- argument of pericentre, $\boldsymbol{\omega}$
- true anomaly, u

Kozai-Lidov oscillations

Broken spherical symmetry \rightarrow angular momentum is not an integral of motion \rightarrow oscillations of eccentricity and inclination

Example:

- $M_{\rm BH}=3.5 imes10^6M_{\odot}$
- $M_{
 m CND}=M_{
 m BH},$ $R_{
 m CND}=1.5\,
 m pc$
- $a_0 = 0.1 R_{CND}, e_0 = 0.1$ $i_0 = 80^\circ, \omega_0 = 0, \Omega_0 = 0$

• $M_{\rm c} = 0.1 M_{\rm BH}$

'Kozai' equations

$$T_{\rm K}\sqrt{1-e^2} \frac{{\rm d}e}{{\rm d}t} = \frac{15}{8} e\left(1-e^2\right) \sin 2\omega \, \sin^2 i$$

$$T_{\rm K}\sqrt{1-e^2} \frac{{\rm d}i}{{\rm d}t} = -\frac{15}{8} e^2 \sin 2\omega \, \sin i \, \cos i$$

$$T_{\rm K}\sqrt{1-e^2} \frac{{\rm d}\omega}{{\rm d}t} = \frac{3}{4} \left\{2-2e^2+5\sin^2\omega \left[e^2-\sin^2 i\right]\right\} + \left(\frac{{\rm d}\omega}{{\rm d}t}\right)_{\rm c}$$

$$T_{\rm K}\sqrt{1-e^2} \frac{{\rm d}\Omega}{{\rm d}t} = -\frac{3}{4}\cos i \left[1+4e^2-5e^2\cos^2\omega\right]$$

$$T_{\rm K} \equiv \frac{M_{\rm BH}}{M_{\rm CND}} \frac{R_{\rm CND}^3}{a\sqrt{GM_{\rm BH}a}}$$

 $\frac{\mathrm{d}\Omega}{\mathrm{d}t}\approx -\frac{3}{4}\,\frac{\cos i}{\mathcal{T}_{\mathrm{K}}}\,\frac{1+\frac{3}{2}e^2}{\sqrt{1-e^2}}\approx \textit{const} \;\; \textrm{for} \; \left(\frac{\mathrm{d}\omega}{\mathrm{d}t}\right)_{\mathrm{c}} \; \textrm{sufficiently large}$

Warped disc of test particles

(Šubr, Schovancová & Kroupa 2009)

Warped self-gravitating disc

(Haas, Šubr & Kroupa 2011)

Two interacting stars in a perturbed Keplerian potential

Secular theory for evolution of two nearby orbits in a perturbed Keplerian potential developed in Haas, Šubr & Vokrouhlický (2011).

- dominating Keplerian potential ($M_{\rm BH}=3.5\times 10^6 M_{\odot})$
- perturbing body on circular orbit ($M_{CND} = 0.3 M_{BH}$, $R_{CND} = 1.5 \,\mathrm{pc}$)
- extended spherical potential damping the Kozai-Lidov oscillations
- two light bodies on initially nearby orbits
 - $i = i' = 70^{\circ}$ • $\Omega = \Omega' = 0$ • e = e' = 0• $a = 0.05 R_{CND}, a' = 0.04 R_{CND}$ • $m = m' = 9 \times 10^{-6} M_{BH} \lor 5 \times 10^{-6} M_{BH}$

Two interacting stars in a perturbed Keplerian potential

(Haas, Šubr & Vokrouhlický 2011)

Two stars in perturbed post-Newtonian potential

Direct integrations of equations of motion by means of ARCHAIN code (Chassonnery, Capuzzo-Dolcetta & Mikkola, 2019; algorithm by Mikkola & Merritt, 2006, 2008), involving post-Newtonian terms up to the 2.5 order.

Two stars in perturbed post-Newtonian potential

Swap, re-binding, inspiral

High eccentricity inspiral?

High eccentricity inspiral?

Summary

- hierarchical four-body dynamics in P-N exhibits similar modes of evolution to the Newtonian case (with arbitrary damper of Kozai-Lidov oscillations)
- mutual interaction of 'light' bodies often accelerates inspiral
 - o energy transfer?
 - eccentricity oscillations?
 - effectively larger mass?
- inspiral with large (> 0.8) eccentricity in non-negligible number ($\approx 4\%)$ of cases
- results very preliminary with arbitrary parameters of the system
 - revision needed
 - o seek for astrophysically relevant application

High eccentricity inspiral?

