Cologne-Prague-Brno 2022 June 2, 2022

# ANALYSIS OF BROAD LINE REGION OF MRK 1018

#### MUNAWWAR KHANDUWALA

University of Cologne



# ABOUT MARKARIAN 1018

- A late-stage galaxy merger, tidal tails evident.
- In general, moderate to strong UV continuum (first in Byurakan Observatory, 1965-1978).
- Redshift, z = 0.043 ~ 600 Mly (first observed - Markarian et al., 1977).
- Changing look from Seyfert
  Type I.9 Type I Type I.9.
- CARS combines muti-wavelength data from Chandra, NuStar, Swift, HST, VLT (MUSE) and other groundbased observations.
- 2-10 keV flux decline by ~10x from 2010-2016.



 $\bigcirc$ 

arcse

 $\Delta(\text{Dec.})$ 

# **OBSERVING THE CHANGING-LOOK**



Archival spectra normalized to same integrated flux as [OIII]λ5007Å (except for Byurakan)



X-ray spectra consistent with no absorption.

Declining accretion disk luminosity.

Chandra spectra fully consistent with single power-law.

# OBSERVING THE CHANGING-LOOK

#### Optical to X-ray SED



- Photometry of nucleus + NUV + FUV + X-ray.
- Peak Luminosity behaves consistently with  $L \sim T^4$ .
- Points to relativistic geometrically thin optically thick disk.



Kim et al. 2018

# MAKING SENSE OF CHANGING LOOK



Systematic change in blue and red components  $\Rightarrow$  bulk motion in both components.

Following X-ray analysis rules out obscuring cloud as trigger for change (McElroy et al. 2016).

# MAKING SENSE OF CHANGING LOOK



- . Rotating Binary Black Holes (BBHs)?
- 2. Combination of inflow + outflow?
- 3. 2 distinct BLRs with recoiling SMBH (rSMBH)?
  - 4. Something else?





# INSTRUMENTS USED

#### VIMOS (VIsible Multi-Object Spectrograph)

- Visible (360 to 1000 nm) wide field imager and multi-object spectrograph.
- Four identical arms with each having FOV 7'  $\times$  8' with a 0.205" pixel size.
- Spectral resolution range from ~200-2500.

- Three modes: Imaging (**IMG**), Multi-Object Spectroscopy (**MOS**), and with Integral Field Unit (**IFU**).

#### GMOS (2 x Gemini Multi-Object Spectrograph)

- Visible (360 to 1030 nm) long-slit and multi-slit spectroscopy
- The Nod-and-Shuffle mode enable superior sky subtraction, is available

with both GMOS-N and GMOS-S in most spectroscopic modes.

- Same modes as in VIMOS.

# ANALYTICAL STEPS FOR MRK 1018

Reduced data-cubes have two positional-dimensions and one spectral-dimension from IFU Imaging modes in both VIMOS and GMOS.

VIMOS Epochs 1-19 from August 2016 – August 2017 GMOS Epochs 2-13 from August 2017 – June 2018 Epochs 14-21 from October 2018 – January 2019

- I. Extracting the 2D-spectra from data-cubes and subsequent 'cleaning' of bad-pixels/noise.
- 2. Telluric correction with help of reference stars.
- 3. Absolute Spectrophotometric correction of Mrk 1018.
- 4. Stellar Continuum Subtraction of the host galaxy from AGN.
- 5. Emission-Line Fitting of Broad-Line features from H-alpha.
- 6. Time-delay in BLR from reverberation mapping (ongoing).

#### I. EXTRACTING 2D SPECTRA: REFERENCE STAR



Circular aperture used to obtain integrated spectra of both star observations (before and after observing Mrk 1018) -dependent on instrument used.

Cleaned spectra are averaged and combined to have a working telluric absorption spectra for all epochs (Example below shows GMOS IFU dataset).

#### 2. TELLURIC CORRECTION OF MRK 1018: NORMALIZING STAR SPECTRA

Each averaged star spectrum baseline is normalized to unity.

This is to be later scaled and subtracted from the Mrk 1018 data to correct for atmospheric contamination.



## 2. TELLURIC CORRECTION OF MRK 1018: CORRECTING MRK 1018

- Mrk 1018 not redshift-calibrated yet for ease of analysis.
- Scaled and subtracted from the Mrk 1018 data to correct for atmospheric contamination.



## 2. TELLURIC CORRECTION OF MRK 1018: CORRECTING MRK 1018



12

## 3. ABSOLUTE SPECTROPHOTOMETRIC CORRECTION OF MRK 1018

- The averaged star spectrum over all epochs is divided by individual star spectra to obtain scaling factors.
- Corrected for spectrophotometry by multiplying Mrk 1018 by the respective scaling factors.



## 4. STELLAR CONTINUUM SUBTRACTION

Stellar continuum model-cube (HE0203-0031) is confined to region of interest (640 – 760 nm) for Mrk 1018, which is scaled appropriately and subtracted to get rid of the stellar background from the host AGN.



## 5. BROAD LINE EMISSION FITTING

- Broad-line features of Mrk 1018 can now be evaluated by fitting emission lines on the corrected data.
- Types of fits initially performed: Lorentzian and Gaussian fits on the broad line component of Mrk 1018.
- Two- and three-component fits are performed with both Lorentzian and Gaussian profiles. However, the difference in the fitting does not show substantial deviation from one another.
- Gaussian fits are more tightly bound and well-behaved. Moreover, three components are optimal to fully be able to explain the broad line emission profile of Mrk 1018.

### 5. BROAD LINE EMISSION FITTING: VIMOS BEST-FITS



## 5. BROAD LINE EMISSION FITTING: GMOS BEST-FITS



#### **U-BAND CONTINUUM**

#### MAGNITUDE

#### FLUX



## MRK 1018 BROAD-LINE H $\alpha$ COMBINED (2016-2019)



## 6.TIME-DELAY FROM DCCF – REVERBERATION MAPPING (ONGOING)

Input parameters for binning and range give slightly varying time-delays from cross-correlation over entire baseline



# REMARKS

- Mrk 1018 is a unique AGN to challenge fundamental principles of AGN physics.
- Reverberation Mapping gives an approximate BLR radius of ~10-13 light-days.
  - Continuous monitoring from radio to X-rays is needed.
    - Model credibility depends on predictive power.
- If trend follows, Mrk 1018 may become Type-1 Seyfert again in mid 2020's?

# THANK YOU

