Radio observations of nearby X-ray and optically bright giant elliptical galaxies and their interaction with the intergalactic medium

Romana Grossová

GPS at Astronomical Institute AVCR, Prague & Masaryk University, Brno

CPB Meeting; 2.06.2022

NRAO/AUI, Condon et al 1994

Motivation: Why gE in radio band?

NGC 1317 spiral galaxy

NGC 1316 giant elliptical galaxy

ed and dead'

Credit:ES

* old population of star
* (almost) no star formation

50 kpc

Optical (VLT)

NGC 1316 Radio (VLA) Optical (VLT)

Active galactic nucleus (AGN)

Credit: NRAO/AUI/NSF

BLACKHOLE

JET

ACCRETION DISK

artist impression; Credit:NASA/JPL-Caltech

Questions to investigate

★ What is detection rate of radio emission at 1-2GHz in the large sample of nearby gE galaxies?

- ★ Is the radio-mechanical AGN feedback widespread in gE?
- ★ What is the duty cycle of AGN?
- ★ What is the feeding mechanism of AGN?

Karl Jansky Very Large Array

aperture synthesis telescope

Angular resolution ~ 1 arcsec

VLA A configuration with **B_max** = 35km at 1-2GHz

Credit: NASA, ESA, S. Baum and C.O'Dea (RIT), R. Perlye and W. Cotton (NRAO/AUI/NSF) and Hubble Heritage Team (STScI,/AURA)

46"

VLA Statistical sample

- ★ parent study: Dunn, 2010
 - high radio detection rate in nearby 18 giant ellipticals bright in optical and X-rays
 - extended radio for 10/18 sources => inconsistent with models
 - proposed extended sample
- ★ our sample of **42** galaxies:
 - 22 archival VLA data + 20 new VLA high resolution data observed in 2015 (PI: Werner)

Defined categories

extended sources (not to scale)

VLA Sample: Main aim

★ detection rate of radio emission inside of these galaxies?

- morphology, extend, P_{1.4GHz}; interaction with the **X-rays**, optical and IR emission? (X-ray and Hα study in Lakhchaura, 2018)

★ investigation of AGN duty cycle

- AGN turning ON and OFF again (Maccagni, 2020)

- AGN **constantly** switched **ON**, while continuously blowing out bubbles of relativistic plasma? (Allen, 2006)

Our main results

- ★ 98% radio emission in the central region (NGC 499 detected with LOFAR)
- ★ 64% **extended** radio structures
- ★ 81% environmental interactions in form of X-ray cavities

(in some cases: **multiple** generations)

Our main results

- ★ 33% point-like morphologies
 - 7/14 show X-ray cavities & cavities in NGC 499
 - 5/14 could be dominated by **star formation**

=> 3 out of 5 show X-ray cavities!

=> majority of AGN in radio-mechanical feedback mode

VLA sample: Statistics - correlations

VLA sample: Statistics - no trends

Mean spectral indices at 1.7kpc from the core; within the L-band (1-2GHz)

Unusual giant elliptical galaxy IC 4296

UK48-inchSchmidt at 468 nm VLA A at 1-2 GHz

located in 1keV group Abell 3565 at z ~ 0.0125

*the contours are created at 5*RMS noise

Smoothed X-ray Chandra image of IC 4296

jets piercing through the hot atmosphere and depositing energy at further distances

^{*}the contours are created at 5*RMS noise

Entropy profile of IC 4296

XMM-Newton image & VLA D contours NW cavity & powerful jets

Our Questions & Conclusions

- ★ high radio detection rate at 1-2GHz in the large sample of giant ellipticals
- ★ radio-mechanical AGN feedback is widespread in these galaxies with a variable activity of their AGN
- ★ duty cycle is high (41/42 radio detection)
- ★ feeding mechanism future ALMA follow-up

FUTURE: Cold Molecular gas with ALMA in gE

Additional slide

CPB Meeting; 2.06.2022

NRAO/AUI, Condon et al 1994

Offset radio emission

recoiled BH, merging galaxies with only one active nucleus?

