Cosmic bubble-blowers and the baryons that do not form stars

Norbert Werner Masaryk University

Why so Much Gas and so Few Stars?

Why so Much Gas and so Few Stars?

Harrison et al. 2017

Hot Atmosphere

Turbulence & bulk motions

Cavity excavated by a radio jet/lobe

AGN driven shock

Giant elliptical galaxy

Supermassive black hole

Precipitation limit

 Precipitating multi-phase gas

Precipitating uplifted gas

Radio jets/lobes

Werner & Mernier 2020

BLACK HOLE BLOWN BUBBLES IN CLUSTERS AND IN GALAXIES

600 000 light years

The biggest black hole outburst in the Universe?

Werner et al. 2016 Giacintucci et al. 2020

The biggest black hole outburst in the Universe?

Giacintucci et al. 2020

The biggest black hole outburst in the Universe?

Giacintucci et al. 2020

Hlavacek-Larrondo et al. 2015

Jones et al. 2002 Baldi et al. 2009

Randall et al. 2015

HIGH DUTY CYCLE

- 41(42)/42 have a central radio sources - 27/42 have an extended radio source
- 34/42 show cavities
- 5 radio sources appear offset from the center

- 7/14 galaxies with point-like radio emission show cavities

Grossová, Werner, et al. 2021

Ha+[NII] IMAGING WITH THE SOAR TELESCOPE

Werner et al. 2014

FAR-INFRARED LINE DETECTIONS IN GIANT ELLIPTICALS

- [CII] detected in every single galaxy
 (6/8) with extended Hα line emitting
 nebulae
- in 4/8 systems also detected the [OI] line and in 3/8 the [OIb] line

Werner et al. 2014

[CII] EMISSION FOLLOWING Ha

VELOCITIES OF THE COLD ISM

VELOCITY DISPERSIONS IN THE COLD ISM

0 1

02 03 04 05 06

DESTRUCTION OF MOLECULAR GAS BY RADIO LOBES

Simionescu et al. 2018

PROPERTIES OF THE HOT ISM

Outside of the innermost core, the entropy and temperature of systems containing cold gas is lower

> Werner et al. 2014 Voit et al. 2015

COLD GAS RICH SYSTEMS PRONE TO COOLING INSTABILITIES

Numerical simulations predict that if $t_{cool}/t_{ff} \leq 10$, local

es will create lium 12,2013, 2, McCourt

tlear the coldremaining Credit: Teddy Cheung unstable out to relatively large radii.

Werner et al. 2014 Voit et al. 2015

Cooling vs. Heating in galactic atmospheres

Unusually steep entropy profiles in systems with powerful jets

Grossova et al. 2018.

Cooling in a rotating X-ray atmosphere

Juráňová et al. 2018.

MRK 1216 A RELIC RED NUGGET

 $M_{\text{stellar}} = (2.0 \pm 0.8) \times 10^{11} M_{\odot}$ $R_{\rm e}$ =2.3 ± 0.1 kpc Age = 12.8±1.5 Gyr $M_{\rm BH} = (4.9 \pm 1.7) \times 10^9 \, M_{\odot}$ D = 97 Mpc (Ferre-Mateu et al. 2017)

 $L_X = 6.9 \times 10^{41} \text{ erg s}^{-1}$ within r<10 kpc

Werner et al. 2018

THE BLACK HOLE - DARK MATTER HALO CORRELATION

COULD THE SMALL SCATTER BE THE RESULT OF DRY MERGERS AND THE CENTRAL LIMIT THEOREM?

CORRELATION IS BETTER FOR SYSTEMS THAT APPEAR TO UNDERGO MORE MERGERS

- In massive early type galaxies, radio mode AGN are mostly switched on
- have more massive black holes producing stronger jets.

SUMMARY

• Most molecular gas in giant ellipticals has likely cooled from their hot atmospheres

• The central black hole mass of massive central group/cluster galaxies correlates with the atmospheric temperature and with the total mass. More massive systems

