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Different ways to categorize galaxies/galactic nuclei




Different ways to categorize galaxies/galactic nuclei

e morphological: spiral, elliptical, SO, irregular
e colour: blue, green, red
e radio-loud, radio-quiet or better(?) jetted/non-jetted

e based on the ionization state (BPT narrow-line diagram,
luminosity-hardness diagram)

e with and without the Nuclear Star Cluster/Disk
e mass spectrum (total stellar/halo mass)
e viewing angle effects (type 1, type 2 AGN...)

e based on the intergalactic environment (galaxy group, cluster,
merging cluster)



Accretion rate as the main driver?

e accretion rate affects the properties of the accretion flow
e accretion at what radius?

e outflow-rate profile
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Hardness-luminosity diagram

Low/hard state vs. High/soft state for black-hole binaries
Does it apply for supermassive black holes?

A Hard
*{Intermediate

Jetline? ",

N

—

X
»

4

Quiescence
Soft Hard

Spectral Hardness
(soft=more thermal, hard=more nonthermal)

X-ray Luminosity/Accretion rate

Fender et al. (2004) >



High accretor vs. low accretor

Spectral energy distribution
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High accretor vs. low accretor

Other trends with the accretion rate:

e the higher the accretion rate, the lower the variability
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High accretor vs. low accretor

Sgr A* is extremely low accretor, with m = 107° — 10~ 8mgqq — high
variability in the NIR and X-ray domain

37 T

@ %}
& >
T

@
r
T

log[VL,(erg s

PRV R B
8 10 12

- 14‘ = 16
log[v(Hz)]

Taken from Yuan & Narayan (2014)



High accretor vs. low accretor

Flares in NIR are consistent with the toy “hot spot” model
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High accretor vs. low accretor

Flares in NIR are consistent with the toy “hot spot” model
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High accretor vs. low accretor

e interesting one-to-one and one-sided correspondance between X-ray
and NIR flares (every X-ray flare has a NIR counterpart but not
vice-versa)

e potential distance and size(!?) dependendence of flares
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AGN feedback

Left: Massive galaxy cluster Abell 1689; Right: Massive elliptical galaxy
NGC 5813




AGN feedback

AGN feedback can operate over eight orders of magnitude: from the
vicinity of the black hole to
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AGN feedback

Colour-mass diagram (blue cloud, red cloud, green valley)
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AGN feedback

Colour-mass diagram (blue cloud, red cloud, green valley)

Late-type galaxy star formation quenching schematic
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AGN feedback

Colour-mass diagram (blue cloud, red cloud, green valley)

Early-type galaxy star formation quenching schematic
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AGN feedback

Stellar mass/halo mass as a function of the halo mass (Harrison et al.
2017)
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AGN feedback

During one star-formation episode (~ 100 Myr), AGN luminosity (Edd.
ratio) evolves on much shorter timescales

AGN variations over one star formation ‘episode’
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Nuclear star clusters

e surround supermassive black holes on the scales of

Nsc = fGM./O')%

M, Oy -2
= f43
(107 M@> (100kms*1> L

e when relaxed, they should be described as Bahcall-Wolf-like density

cusps fitted by a simple power-law density profile

e Bahcall & Wolf (1976, 1976): n, o< r~7/* and n, oc r=3/2, even
steeper for massive stellar remnants (black holes)

e densest stellar systems in galaxies

19
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Nuclear star cluste

e surround supermassive black holes on the scales of

mnsc = fGM, /o2
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e densest stellar systems in galaxies
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Nuclear star clusters

e densest stellar systems in galaxies

Galactic North

Nuclear Bulge

Nuclear Star Cluster| "

~275 pc/2 deg . ~6.pe/2.5-arcmin;

e is centered on Sgr A* and appears point-symmetric in projection;
e is flattened, with a ratio between minor and major axis of ¢ = 0.71 & 0.02;
e has a half-light radius of r, = 4.2 + 0.4 pc;

e has a total luminosity and mass of Lyscasum = 4.1 £ 0.4 x 107 L, and
Muwnsc = 2.5+ 0.4 x 107 Mg, respectively.

Schoedel et al. (2014)
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Nuclear star clusters

e occupation fraction as a function of stellar mass for early- and
late-type galaxies
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Nuclear star clusters

e Can “microscopic” NSCs affect the black-hole activity and
AGN feedback over eight orders of magnitude in length-scale?
e NSCs have different density profiles and a mixture of stars

e position of the stagnation radius — inflow/outflow boundary — is
affected

stellar bow shock 7~influence radius

Mine~2 pc~50"

stagnation radius
~ Bondi radius_

denser filaments *
(minispiral arms) %,

hot ionized plasma
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Nuclear star clusters

e position of the stagnation radius — inflow/outflow boundary — is
affected

* Youtflow,
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where I is the power-law index of the inner stellar brightness profile. For estimative pur-

poses, we consider two limiting cases, the core profile with " = 0.1 and the stellar cusp with

' = 0.8. The quantity vy, = —dn,/drly,,, is the gas density power-law slope at ry,g, which

according to the numerical analysis of Generozov et al. (2015) is Ve = 1/6[(4T + 3)].

According to the estimates in Eq. (8), the stagnation radius is expected to be located close
to the Bondi radius with an offset given by the numerical factor (Generozov et al., 2015)

Fsug 13+ 80
5 (2+DE+4D)’
which is of the order of unity. This is also illustrated in the two-zone scheme in Fig. 2.
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Nuclear star clusters
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Nuclear star clusters

e position of the stagnation radius — inflow/outflow boundary — is
affected

e sources with no NSC/core-like NSC — a bigger potential for the
AGN /high-accretion mode since ryg is big and the matter inside
~ ﬁftag can accummulate for massive black holes?

e cusp-like NSC may prohibit the accummulation of a large

amount of matter — quiescent/Milky Way-like ADAF mode?
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where I is the power-law index of the inner stellar brightness profile. For estimative pur-
poses, we consider two limiting cases, the core profile with I = 0.1 and the stellar cusp with
T = 0.8. The quantity vyqe = —dn,/drly,, is the gas density power-law slope at ryyg, which
according to the numerical analysis of Generozov et al. (2015) is vsg = 1/6[(4I" + 3)].
According to the estimates in Eq. (8), the stagnation radius is expected to be located close
to the Bondi radius with an offset given by the numerical factor (Generozov et al., 2015)
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What to look for?

e JWST results (first image July 12)
e IXPE (completely new information)
ELT: METIS, MICADO

Athena - maybe a problem...

e LISA

po\a‘ime"y Expl,.,,e'

The Evolution of Infrared Space Telescopes

WISE W2 4.6 um Spitzer/IRAC 8.6 pm TWST/MIRI 7.7 pmm
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Meeting photos
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Texas Symposium in Prague

e 31st Texas Symposium conference
e September 12-16 2022 in Prague

©Prague City Tourism




Friday evening

e 18:30 Jean-Paul's restaurant (30 places) - order yourself
(B&hounska 4)

e 21:00 Air Café (Zelny trh 8)
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Saturday — relaxed sightseeing

e 10:00 meeting close to the Brno black astronomical clock (Namésti
Svobody)
e some people may go bouldering: talk to Kristina Kallova
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See you at next “CP” meeting in Cologne, Prague
or elsewhere
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