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Optical/IR data from the Pan-STARRS
telescope in Hawaii (blue, yellow, and white)

Radio data from the LOw Frequency

X-rays from Chandra (blue) ARray (LOFAR: red)
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1. Merger Scenario of Abell 1775
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Spiral pattern — gas sloshing process — merger-induced?




1. Merger Scenario of Abell 1775
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> As an infalling subcluster?
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> As a primary cluster?
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1. Merger Scenario of Abell 1775

> As a primary cluster? <— SPH simulations (GADGET-3)

v Observed X-ray morphology, gas temperature, DM mass distribution can be reproduced — gas sloshing;

v NAT radio galaxy is likely to be a single galaxy falling into the cluster center, rather than a centrally dominated galaxy of sub-cluster
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2. Radio emission in Abell 1775 Botteon et al. 2021; A&A 649, A37
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¢ Radio tail in NAT radio galaxy:
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LOFAR 144 MHz high-resolution (5°” x 3”’) data. Radio contours start from 3o,
where 6 = 148 pJy beam™!, and they are spaced by a factor of 2. Botton et al. 2021




2.1 Head-tailed radio galaxy
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LOFAR 144 MHz (9”* x 5°’), GMRT 235 MHz (26’ x 14’), GMRT 610 MHz (15’
x 15”%), and VLA 1.4 GHz (19 x 18”). Botton et al. 2021

¢ Outer tail emission can only be observed at low-frequency

More diffuse and wider, constant surface brightness

— oldest population of electrons has been disturbed and reenergized
¢ Tail breaks and change direction at the position of cold

front

Dynamics of the ICM impacts the morphology and spectral properties
of tailed cluster radio galaxy

— interplay between the head-tail radio galaxy and the thermal gas

¢ Integrated flux density
Inner tail:
aflyMhz = 1.06 + 0.02,
aliflz —1.69+0.14

Outer tail:

o235 Mz = 1,23 +0.52
¢ Spectral index map:

a =0.6-0.7 in the core, spectral steepens along the tail




Head-tailed radio galaxy

¢ Outer tail emission can only be observed at low-frequency
More diffuse and wider, constant surface brightness
— oldest population of electrons has been disturbed and reenergized

¢ Tail breaks and change direction at the position of cold

~ front
S 27"
o . . .
gl Dynamics of the ICM impacts the morphology and spectral properties
C
'(% of tailed cluster radio galaxy
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g — interplay between the head-tail radio galaxy and the thermal gas
¢ Integrated flux density
21 Inner tail:
a$iiMaz — 1.06 + 0.02,
aliGiz = 1.69+0.14
+26°18' Outer tail:
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a3 MHz — 1,234 0.52

LOFAR 144 MHz low-resolution (29°” X 26°”) contours overlaid on the ¢ Spectral index map:

Chandra image. Radio contours start from 3¢, where ¢ = 255 pJy beam™!,
and they are spaced by a factor of 2. Botton et al. 2021 . .
a =0.6-0.7 in the core, spectral steepens along the tail




2.1 Head-tailed radio galaxy

¢ Outer tail emission can only be observed at low-frequency

More diffuse and wider, constant surface brightness

10°E T : Igﬂf;tfa':.__ — oldest population of electrons has been disturbed and reenergized
c L 3
i ] ¢ Tail breaks and change direction at the position of cold
L é. = i
= + l front
é 102 -
> f i " Dynamics of the ICM impacts the morphology and spectral properties
2 T v 1
< | of tailed cluster radio galaxy
X
= 10! = = — interplay between the head-tail radio galaxy and the thermal gas
¢ Integrated flux density
L ¥ ] Inner tail:
100 ) ) ) L a$iiMaz — 1.06 + 0.02,

L
108 10° alifhz 169 +0.14
Frequency [Hz]

Outer tail:

Integrat.ed spectra of the “inner” and “outer” regions (shown in the inset panel) of the Q235 Mz — 4 231 0.52
head-tail radio galaxy. Botton et al. 2021

¢ Spectral index map:

a =0.6-0.7 in the core, spectral steepens along the tail
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Head-tailed radio galaxy

¢ Outer tail emission can only be observed at low-frequency

More diffuse and wider, constant surface brightness
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¢ Spectral index map:

a =0.6-0.7 in the core, spectral steepens along the tail
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2.2. Diffuse radio emission

¢ Filamentary radio emission: 30
 Ultra steep spectrum, a = 2.4 L. :
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LOFAR 144 MHz high-resolution (5’ % 3°’) data. Radio contours start from 3o,
where 6 = 148 uJy beam™!, and they are spaced by a factor of 2. Botton et al. 2021
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2.2. Diffuse radio emission

¢ Roundish diffuse radio emission:

* Located at the cluster center o
* Radio emission size ~ 300 kpc
27"

* Confined by the cold front in the NE
* Radio power P4 v, =3.1%10%* W Hz'!
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¢ Origin of radio mini-halo: 21

* Pre-existing population of seed relativistic

electrons were injected by cluster AGN 26718
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* Re-accelerated by the turbulence triggered by

LOFAR 144 MHz low-resolution (29°” x 26°") contours overlaid on the
merger_induced gas SlOShing Chandra image. Radio contours start from 3¢, where ¢ =255 puJy beam™!,
and they are spaced by a factor of 2. Botton et al. 2021
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1. Abell 1775 is the primary cluster undergoing merger-induced gas sloshing;

2. The transition between inner and outer tail of NAT occurs at the cold front; Outer tail might originate from
the re-acceleration of the oldest electrons in the tail;

3. Filamentary and diffuse radio emission with ultra-steep spectrum can be classified as revived fossil plasma;
4. Central diffuse radio emission can be speculated as radio min-halo, re-accelerated by the turbulence

generated by the merger-induced gas sloshing.

THANKS!
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THANKS!

Questions & Comments
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