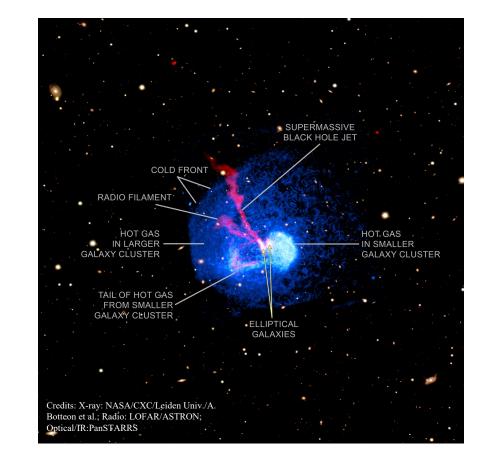

The Merger Dynamics of Galaxy Cluster Abell 1775 and The Interplay Between the ICM and Tailed Radio Galaxies

Dan Hu High-Energy Astrophysics Group @ Masaryk University hudan.bazhaoyu@gmail.com

Abell 1775 (z = 0.0717)



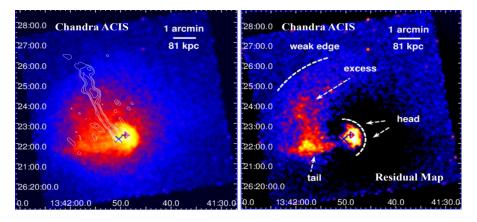
Optical/IR data from the Pan-STARRS telescope in Hawaii (blue, yellow, and white)

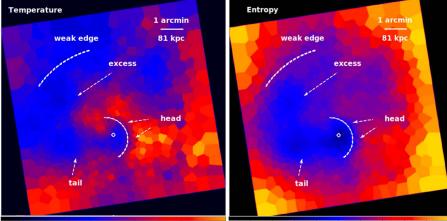
X-rays from Chandra (blue)

Radio data from the LOw Frequency ARray (LOFAR; red)

Abell 1775 (z = 0.0717)

Origin of other radio substructures?


Interplay between intracluster medium (ICM) and radio galaxies?


X-rays from Chandra (blue), optical data from the Pan-STARRS telescope in Hawaii (blue, yellow, and white), & radio data from the LOw Frequency ARray (LOFAR; red).

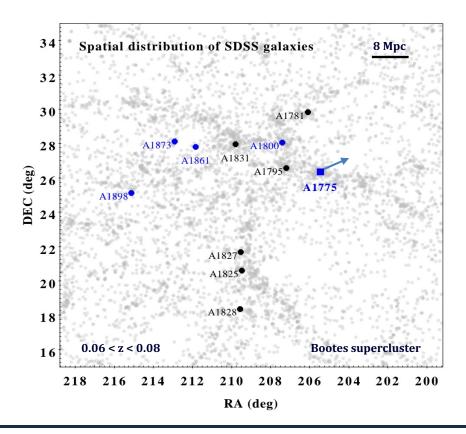
Onging merger?

Properties of radio tail of head-tail radio galaxy?

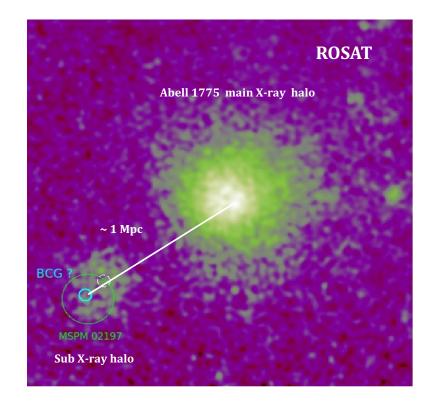
1. Merger Scenario of Abell 1775

X-ray discontinuities in the ICM and gas motions

- Arc-shaped edge (i.e., head):
 - ~ 48 kpc west of the X-ray peak
- Cold gas tail:

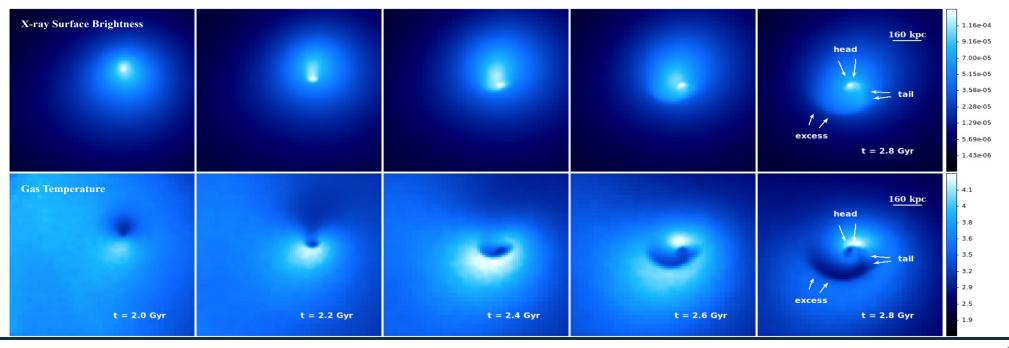

Extends eastward to ~163 kpc

- Spiral-like X-ray excess:
 - Within ~ 81- 324 kpc northeast of the core Connects with the end of the tail
- Head, weak edge \rightarrow cold front:


Spiral pattern \rightarrow gas sloshing process \rightarrow merger-induced?

1. Merger Scenario of Abell 1775

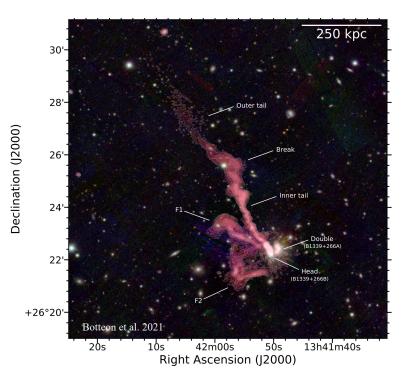
> As an infalling subcluster?


> As a primary cluster?

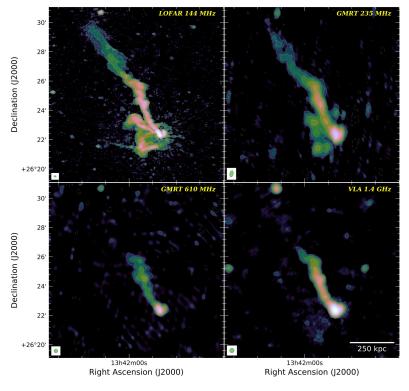
1. Merger Scenario of Abell 1775

➤ As a primary cluster? ← SPH simulations (GADGET-3)

- ✓ Observed X-ray morphology, gas temperature, DM mass distribution can be reproduced \rightarrow gas sloshing;
- ✓ NAT radio galaxy is likely to be a single galaxy falling into the cluster center, rather than a centrally dominated galaxy of sub-cluster


2. Radio emission in Abell 1775

• Radio tail in NAT radio galaxy:


- Bright head ($S_{144 \text{ MHz}} \approx 1.2 \text{ Jy}$)
- Inner 400 kpc-tail (S_{144 MHz} \approx 1.3 Jy)
- Outer 400 kpc-tail (S_{144 MHz} \approx 0.3 Jy)

• Diffuse radio emission:

- Filamentary emission F1 (S_{144 MHz} \approx 0.6 Jy)
- Filamentary emission F2 ($S_{144 \text{ MHz}} \approx 1.5 \text{ Jy}$)
- Central diffuse emission (S_{144 MHz} \approx 0.2 Jy)

LOFAR 144 MHz high-resolution (5'' × 3'') data. Radio contours start from 3σ , where $\sigma = 148 \ \mu$ Jy beam⁻¹, and they are spaced by a factor of 2. Botton et al. 2021

LOFAR 144 MHz (9" × 5"), GMRT 235 MHz (26" × 14"), GMRT 610 MHz (15" × 15"), and VLA 1.4 GHz (19" × 18"). Botton et al. 2021

Outer tail emission can only be observed at low-frequency

More diffuse and wider, constant surface brightness

- \rightarrow oldest population of electrons has been disturbed and reenergized
- Tail breaks and change direction at the position of cold front

Dynamics of the ICM impacts the morphology and spectral properties of tailed cluster radio galaxy

 \rightarrow interplay between the head-tail radio galaxy and the thermal gas

♦ Integrated flux density

```
Inner tail:

\alpha_{144~MHz}^{610~MHz} = 1.06 \pm 0.02,


\alpha_{610~MHz}^{1.4~GHz} = 1.69 \pm 0.14

Outer tail:
```

 $\alpha_{144\,MHz}^{235\,MHz} = 1.23 \pm 0.52$

• Spectral index map:

 $\alpha = 0.6-0.7$ in the core, spectral steepens along the tail

LOFAR 144 MHz low-resolution (29'' \times 26'') contours overlaid on the Chandra image. Radio contours start from 3 σ , where σ = 255 µJy beam⁻¹, and they are spaced by a factor of 2. Botton et al. 2021

Outer tail emission can only be observed at low-frequency

More diffuse and wider, constant surface brightness

- \rightarrow oldest population of electrons has been disturbed and reenergized
- Tail breaks and change direction at the position of cold front

Dynamics of the ICM impacts the morphology and spectral properties of tailed cluster radio galaxy

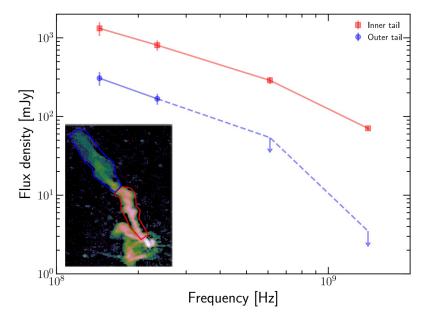
 \rightarrow interplay between the head-tail radio galaxy and the thermal gas

Integrated flux density

```
Inner tail:

a_{144\,MHz}^{610\,MHz} = 1.06 \pm 0.02,

a_{610\,MHz}^{1.4\,GHz} = 1.69 \pm 0.14


Outer tail:
```

```
\alpha_{144~MHz}^{235~MHz} = 1.23 \pm 0.52
```

• Spectral index map:

 $\alpha = 0.6-0.7$ in the core, spectral steepens along the tail

9

Integrated spectra of the "inner" and "outer" regions (shown in the inset panel) of the head-tail radio galaxy. Botton et al. 2021

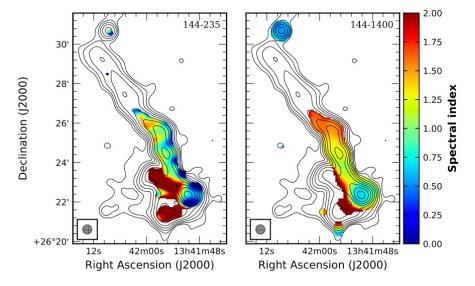
• Outer tail emission can only be observed at low-frequency

More diffuse and wider, constant surface brightness

- \rightarrow oldest population of electrons has been disturbed and reenergized
- Tail breaks and change direction at the position of cold front

Dynamics of the ICM impacts the morphology and spectral properties of tailed cluster radio galaxy

 \rightarrow interplay between the head-tail radio galaxy and the thermal gas


• Integrated flux density

```
Inner tail: \alpha_{144~MHz}^{610~MHz}=1.06\pm0.02, \alpha_{610~MHz}^{1.4~GHz}=1.69\pm0.14 Outer tail:
```

```
\alpha_{144~MHz}^{235~MHz} = 1.23 \pm 0.52
```

• Spectral index map:

 $\alpha = 0.6-0.7$ in the core, spectral steepens along the tail

Low (144–235 MHz) and high (144–1400 MHz) frequency spectral index maps at a resolution of $28^{"} \times 28^{"}$ with LOFAR contours at the same resolution overlaid. Botton et al. 2021

• Outer tail emission can only be observed at low-frequency

More diffuse and wider, constant surface brightness

- \rightarrow oldest population of electrons has been disturbed and reenergized
- Tail breaks and change direction at the position of cold front

Dynamics of the ICM impacts the morphology and spectral properties of tailed cluster radio galaxy

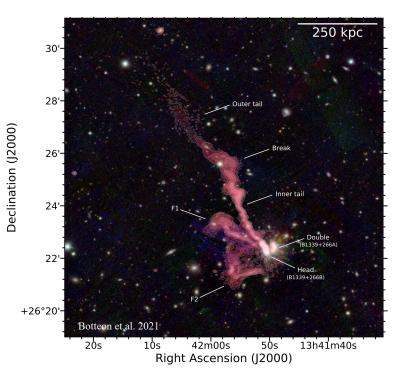
 \rightarrow interplay between the head-tail radio galaxy and the thermal gas

• Integrated flux density

Inner tail:

```
\alpha_{144 MHz}^{610 MHz} = 1.06 \pm 0.02,
\alpha_{610 MHz}^{1.4 GHz} = 1.69 \pm 0.14
```

Outer tail:

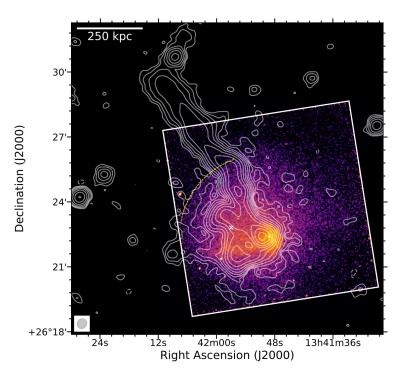

$$\alpha_{144\,MHz}^{235\,MHz} = 1.23 \pm 0.52$$

• Spectral index map:

 $\alpha = 0.6-0.7$ in the core, spectral steepens along the tail

• Filamentary radio emission:

- Ultra steep spectrum, $\alpha = 2.4$
- Lack of clear optical counterpart
- Corresponding to compression region in ICM
- \rightarrow revived fossil plasma emission
- Origin of revived fossil plasma emission:
 - Relativistic plasma injected by two tailed-radio galaxies
 - Revived by the adiabatic compression due to gas motion in the cluster core


LOFAR 144 MHz high-resolution (5'' × 3'') data. Radio contours start from 3σ , where $\sigma = 148 \mu$ Jy beam⁻¹, and they are spaced by a factor of 2. Botton et al. 2021

• Roundish diffuse radio emission:

- Located at the cluster center
- Radio emission size ~ 300 kpc
- Confined by the cold front in the NE
- Radio power $P_{\rm 144~MHz} \approx 3.1 \times 10^{24}~W~Hz^{-1}$
- \rightarrow radio mini-halo

• Origin of radio mini-halo:

- Pre-existing population of seed relativistic electrons were injected by cluster AGN
- Re-accelerated by the turbulence triggered by merger-induced gas sloshing

LOFAR 144 MHz low-resolution (29'' × 26'') contours overlaid on the Chandra image. Radio contours start from 3σ , where $\sigma = 255 \ \mu$ Jy beam⁻¹, and they are spaced by a factor of 2. Botton et al. 2021

- 1. Abell 1775 is the primary cluster undergoing merger-induced gas sloshing;
- 2. The transition between inner and outer tail of NAT occurs at the cold front; Outer tail might originate from the re-acceleration of the oldest electrons in the tail;
- 3. Filamentary and diffuse radio emission with ultra-steep spectrum can be classified as revived fossil plasma;
- 4. Central diffuse radio emission can be speculated as radio min-halo, re-accelerated by the turbulence

generated by the merger-induced gas sloshing.

THANKS!

THANKS!

Questions & Comments