Position drift and redshift drift in general relativity

Mikołaj Korzyński

Centre for Theoretical Physics, Polish Academy of Sciences

Warsaw

Cologne-Prague-Brno Meeting, June 1st-3rd 2022 Institute of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Brno

Idea

Light propagation effect in curved spacetimes (geometric optics approximation) done exactly

Focus on drift effects: temporal variations of observed position (proper motion) and redshift (redshift drift), for a given source and observer

Exact expressions, valid in any spacetime: all retardation, light bending and lensing effects taken into account automatically (good starting point for other approximations)

Geometric formulation: expressions in terms of the curvature tensor along the line of sight, plus kinematical variables (compare the Sachs optical equations [Sachs 1961])

Idea

Light propagation effect in curved spacetimes (geometric optics approximation) done exactly

Focus on drift effects: temporal variations of observed position (proper motion) and redshift (redshift drift), for a given source and observer

Exact expressions, valid in any spacetime: all retardation, light bending and lensing effects taken into account automatically (good starting point for other approximations)

Geometric formulation: expressions in terms of the curvature tensor along the line of sight, plus kinematical variables (compare the Sachs optical equations [Sachs 1961])

Applications:

- redshift drift and cosmic parallax in cosmology
- ray-tracing near a black hole, images of moving sources around a black hole
- pulsar timing, gravitational waves
- astrometry

Momentary position on the sky = spatial normalized vector

$$r^{\mu} = \frac{l_{\mathcal{O}}^{\mu}}{l_{\mathcal{O}\nu} u_{\mathcal{O}}^{\nu}} + u_{\mathcal{O}}^{\mu} \qquad r^{\mu} u_{\mathcal{O}\mu} = 0 \qquad r^{\mu} r_{\mu} = 1$$

In order to define the position drift we need "fixed direction on the sky"

Many choices possible

Reasonable assumption: conserved angle between fixed directions

Momentary position on the sky = spatial normalized vector

 $r^{\mu} = \frac{l_{\mathcal{O}}^{\mu}}{l_{\mathcal{O}\nu} u_{\mathcal{O}}^{\nu}} + u_{\mathcal{O}}^{\mu} \qquad r^{\mu} u_{\mathcal{O}\mu} = 0 \qquad r^{\mu} r_{\mu} = 1$

In order to define the position drift we need "fixed direction on the sky"

Many choices possible

Reasonable assumption: conserved angle between fixed directions

Alternatives:

Momentary position on the sky = spatial normalized vector

 $r^{\mu} = \frac{l_{\mathcal{O}}^{\mu}}{l_{\mathcal{O}\nu} u_{\mathcal{O}}^{\nu}} + u_{\mathcal{O}}^{\mu} \qquad r^{\mu} u_{\mathcal{O}\mu} = 0 \qquad r^{\mu} r_{\mu} = 1$

In order to define the position drift we need "fixed direction on the sky"

Many choices possible

Reasonable assumption: conserved angle between fixed directions Alternatives:

Use local physics near the observer to define them (for example: gyroscopes)
 Gravity Probe B

Momentary position on the sky = spatial normalized vector

 $r^{\mu} = \frac{l_{\mathcal{O}}^{\mu}}{l_{\mathcal{O}\nu} u_{\mathcal{O}}^{\nu}} + u_{\mathcal{O}}^{\mu} \qquad r^{\mu} u_{\mathcal{O}\mu} = 0 \qquad r^{\mu} r_{\mu} = 1$

In order to define the position drift we need "fixed direction on the sky"

Many choices possible

Reasonable assumption: conserved angle between fixed directions Alternatives:

- Use local physics near the observer to define them (for example: gyroscopes)
 Gravity Probe B
- Use positions of distant objects ("fixed quasars")

Standard method in astrometry (International Celestial Reference Frame, Gaia Celestial Reference Frame)...

We choose the Fermi-Walker transport and derivative (local physics/geometry) [Hellaby, Walters 2018]

Fermi-Walker derivative: $\delta_{\mathcal{O}} y^{\mu} = \nabla_{u_{\mathcal{O}}} y^{\mu} - u_{\mathcal{O}}^{\mu} w_{\mathcal{O}\nu} y^{\nu}$

For geodesic observers it agrees with the covariant derivative

We choose the Fermi-Walker transport and derivative (local physics/geometry) [Hellaby, Walters 2018]

Fermi-Walker derivative: $\delta_{\mathcal{O}} y^{\mu} = \nabla_{u_{\mathcal{O}}} y^{\mu} - u_{\mathcal{O}}^{\mu} w_{\mathcal{O}\nu} y^{\nu}$

For geodesic observers it agrees with the covariant derivative

Properties:

 $\delta_{\mathcal{O}} u_{\mathcal{O}}^{\mu} = 0$

 $\delta_{\mathcal{O}} g_{\mu\nu} = 0$

 $y^{\mu} u_{\mathcal{O} \mu} = 0 \Longrightarrow \delta_{\mathcal{O}} y^{\mu} u_{\mathcal{O} \mu} = 0$

Angles on the celestial sphere conserved

We choose the Fermi-Walker transport and derivative (local physics/geometry) [Hellaby, Walters 2018]

Fermi-Walker derivative: $\delta_{\mathcal{O}} y^{\mu} = \nabla_{u_{\mathcal{O}}} y^{\mu} - u_{\mathcal{O}}^{\mu} w_{\mathcal{O}\nu} y^{\nu}$

For geodesic observers it agrees with the covariant derivative

Properties:

 $\delta_{\mathcal{O}} u_{\mathcal{O}}^{\mu} = 0$

$$\delta_{\mathcal{O}} g_{\mu\nu} = 0$$

 $y^{\mu} u_{\mathcal{O} \mu} = 0 \Longrightarrow \delta_{\mathcal{O}} y^{\mu} u_{\mathcal{O} \mu} = 0$

Angles on the celestial sphere conserved

Other reasonable definitions differ by a rotation

$$\tilde{\delta}r^{i} = \delta_{\mathcal{O}}r^{j} + \Omega^{i}_{j}r^{j} \qquad \qquad \Omega_{ij} = -\Omega_{ji}$$

Physical situation

worldlines of the observer and emitter

 $\chi_{O}(\tau)$ $\chi_{\mathscr{E}}(au')$

connecting null geodesics

 $\gamma_{\tau}(\lambda)$

affine parametrization

 $\gamma_{\tau}(\lambda_{\mathcal{O}}) = \chi_{\mathcal{O}}(\tau)$

 $\gamma_{\tau}(\lambda_{\mathscr{C}}) = \chi_{\mathscr{C}}(s(\tau))$

tangent vectors to null geodesics

observation time vector

esics
$$l^{\mu} = \frac{\partial x^{\mu}}{\partial \lambda}$$
 χ_{ε}
 $X^{\mu} = \frac{\partial x^{\mu}}{\partial \tau} < \begin{cases} \text{find an expression (up to $C \ l^{\mu}) \\ \text{in terms of } u_{\varepsilon}, \ u_{\Theta} \text{ and functionals of curve} \end{cases}$$

in terms of $u_{\mathcal{E}}$, $u_{\mathcal{O}}$ and functionals of curvature

 $\chi_{\mathcal{E}}$

 $w^{\mu}_{\mathcal{E}}$

E

()

 $\chi_{\mathcal{O}}$

 X^{μ} satisfies the GDE

$$\nabla_l \nabla_l X^\mu - R^\mu_{\ \alpha\beta\nu} \, l^\alpha \, l^\beta \, X^\nu = 0$$

 X^{μ} satisfies the GDE

$$\nabla_l \nabla_l X^\mu - R^\mu_{\ \alpha\beta\nu} \, l^\alpha \, l^\beta \, X^\nu = 0$$

from the parametrization

 $\begin{aligned} X^{\mu}(\mathcal{O}) &= u_{\mathcal{O}}^{\mu} \\ X^{\mu}(\mathcal{E}) &= C \, u_{\mathcal{E}}^{\mu} \\ \nabla_{X} l^{\mu} \, l_{\mu} &= 0 \qquad \Longleftrightarrow l_{\mathcal{O}\mu} \, X^{\mu}(\mathcal{O}) = l_{\mathcal{E}\mu} \, X^{\mu}(\mathcal{E}) \\ \frac{ds(\tau)}{d\tau} &= C = \frac{l_{\mathcal{O}\mu} \, u_{\mathcal{O}}^{\mu}}{l_{\mathcal{E}\mu} \, u_{\mathcal{E}}^{\mu}} = \frac{1}{1+z} \end{aligned}$

 X^{μ} satisfies the GDE

$$\nabla_l \nabla_l X^{\mu} - R^{\mu}_{\ \alpha\beta\nu} \, l^{\alpha} \, l^{\beta} \, X^{\nu} = 0$$

from the parametrization

 $\begin{aligned} X^{\mu}(\mathcal{O}) &= u_{\mathcal{O}}^{\mu} \\ X^{\mu}(\mathcal{E}) &= C \, u_{\mathcal{E}}^{\mu} \\ \nabla_{X} l^{\mu} \, l_{\mu} &= 0 \qquad \Longleftrightarrow l_{\mathcal{O}\mu} \, X^{\mu}(\mathcal{O}) = l_{\mathcal{E}\mu} \, X^{\mu}(\mathcal{E}) \\ &\frac{ds(\tau)}{d\tau} = C = \frac{l_{\mathcal{O}\mu} \, u_{\mathcal{O}}^{\mu}}{l_{\mathcal{E}\mu} \, u_{\mathcal{E}}^{\mu}} = \frac{1}{1+z} \end{aligned}$

boundary value problem (Dirichlet)

$$X^{\mu}(\mathscr{C}) = u_{\mathscr{O}}^{\mu}$$
$$X^{\mu}(\mathscr{C}) = \frac{1}{1+z} u_{\mathscr{C}}^{\mu}$$

Solution in terms of $u_{\mathcal{O}}$, $u_{\mathcal{C}}$ and curvature functionals

$$\begin{split} \ddot{\mathscr{D}}^{A}{}_{B} &- R^{A}{}_{\alpha\beta C} \, l^{\alpha} \, l^{\beta} \, \mathscr{D}^{C}{}_{B} = 0 \\ \\ \mathscr{D}^{A}{}_{B}(\mathscr{O}) &= 0 \\ \\ \dot{\mathscr{D}}^{A}{}_{B}(\mathscr{O}) &= \delta^{A}{}_{B} \\ \end{split}$$
 Jacobi matrix

$$\begin{split} \ddot{m}^{A}_{\ \mu} - R^{A}_{\ \alpha\beta\beta} \, l^{\alpha} \, l^{\beta} \, m^{B}_{\ \mu} &= R^{A}_{\ \alpha\beta\mu} \, l^{\alpha} \, l^{\beta} \\ m^{A}_{\ \mu}(\mathcal{O}) &= 0 \\ \dot{m}^{A}_{\ \mu}(\mathcal{O}) &= 0 \\ \end{split}$$

Solution in terms of $u_{\mathcal{O}}$, $u_{\mathcal{C}}$ and curvature functionals

$$\begin{split} \ddot{\varnothing}^{A}_{\ B} - R^{A}_{\ \alpha\betaC} l^{\alpha} l^{\beta} \mathscr{D}^{C}_{\ B} = 0 \\ \mathscr{D}^{A}_{\ B}(\mathscr{O}) = 0 \\ \dot{\varnothing}^{A}_{\ B}(\mathscr{O}) = \delta^{A}_{\ B} \qquad \text{Jacobi matrix} \end{split}$$
$$\begin{split} \vec{m}^{A}_{\ \mu} - R^{A}_{\ \alpha\beta\beta} l^{\alpha} l^{\beta} m^{B}_{\ \mu} = R^{A}_{\ \alpha\beta\mu} l^{\alpha} l^{\beta} \\ m^{A}_{\ \mu}(\mathscr{O}) = 0 \\ \dot{m}^{A}_{\ \mu}(\mathscr{O}) = 0 \\ \dot{m}^{A}_{\ \mu}(\mathscr{O}) = 0 \\ \text{solution} \qquad X^{\mu} = \hat{u}^{\mu}_{\ O} + e^{\mu}_{A} \left(\phi^{A} + m^{A}_{\ \nu} u^{\nu}_{\ O}\right) + C \cdot l^{\mu} \end{split}$$

$$\phi^{C}(\lambda) = \mathcal{D}^{C}_{A}(\lambda) \mathcal{D}^{-1^{A}}{}_{B}(\mathcal{E}) \left(\left(\frac{1}{1+z} u_{\mathcal{E}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}_{\mu}(\lambda_{\mathcal{E}}) u_{\mathcal{O}}^{\mu} \right)$$

 $\delta_{\mathcal{O}} r^{\mu} = \nabla_X r^{\mu} - u^{\mu}_{\mathcal{O}} w_{\mathcal{O}\nu} r^{\nu}$ Fermi-Walker derivative

 $\delta_{\mathcal{O}} r^{\mu} = \nabla_X r^{\mu} - u^{\mu}_{\mathcal{O}} w_{\mathcal{O}\nu} r^{\nu}$ Fermi-Walker derivative

$$\delta_{\mathcal{O}}r^{A} = (u^{\mu}_{\mathcal{O}}l_{\mathcal{O}\mu})^{-1} \mathcal{D}^{-1^{A}}{}_{\mathcal{B}}\left(\left(\frac{1}{1+z}u_{\mathcal{C}}-\hat{u}_{\mathcal{O}}\right)^{B} - m^{B}{}_{\nu}u^{\nu}_{\mathcal{O}}\right) + w^{A}_{\mathcal{O}}$$

 $\delta_{\mathcal{O}} r^{\mu} = \nabla_X r^{\mu} - u^{\mu}_{\mathcal{O}} w_{\mathcal{O}\nu} r^{\nu}$ Fermi-Walker derivative

$$\delta_{\mathcal{O}} r^{A} = (u^{\mu}_{\mathcal{O}} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{\mathcal{B}} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u^{\nu}_{\mathcal{O}} \right) + w^{A}_{\mathcal{O}}$$

magnification matrix MAB

 $\delta_{\mathcal{O}} r^{\mu} = \nabla_{X} r^{\mu} - u_{\mathcal{O}}^{\mu} w_{\mathcal{O}_{\mathcal{V}}} r^{\nu} \quad \text{Fermi-Walker derivative}$ $\delta_{\mathcal{O}} r^{A} = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O}_{\mu}})^{-1} \mathscr{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m_{\nu}^{B} u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$ $\text{magnification matrix } M^{A_{B}}$ transverse 4-velocitydifference

flat spacetime

$$\delta_{\mathcal{O}} r^{A} = D_{\mathcal{O}}^{-1} \left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{A} + w_{\mathcal{O}}^{A}$$

flat spacetime

$$\delta_{\mathcal{O}} r^{A} = D_{\mathcal{O}}^{-1} \left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{A} + w_{\mathcal{O}}^{A}$$

flat spacetime, non-relativistic limit $c \rightarrow \infty$

$$\delta_{\mathcal{O}} r^{A} = D^{-1} \left(v_{\mathcal{C}} - v_{\mathcal{O}} \right)^{A}$$

$$\delta_{\mathcal{O}} r^{A} = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$$

$$A = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$$

$$A = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$$

$$A = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$$

$$A = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$$

$$A = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$$

$$A = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$$

$$A = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$$

$$A = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$$

$$A = (u_{\mathcal{O}}^{\mu} l_{\mathcal{O} \mu})^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\mu} u_{\mathcal{O}}^{\nu} \right) + (u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} - u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} \right)^{-1} \mathcal{D}^{-1^{A}}{}_{B} \left(\left(\frac{1}{1+z} u_{\mathcal{O}} \right)^{-1^{A}} \right) + (u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} - u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} \right)^{-1^{A}} \right) + (u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} - u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} \right) + (u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} - u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} \right) + (u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} - u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} - u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} \right) + (u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} - u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} \right) + (u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} - u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} - u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} \right) + (u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} - u_{\mathcal{O}}^{\mu} l_{\mathcal{O}} \right)$$

depends on the apparent position only

 $w_{\mathcal{O}}^{A} \equiv w_{\mathcal{O}}^{A}(r^{j})$ $w_{\mathcal{O}\perp}^{i} = w_{\mathcal{O}}^{j}(\delta_{j}^{i} - r^{i}r_{j})$

vector dipole on the celestial sphere

generates conformal transformations of the celestial sphere (aberration effect)

Apparent superluminal motions

$$\delta_{\mathcal{O}}r^{A} = (u_{\mathcal{O}}^{\mu}l_{\mathcal{O}\mu})^{-1} \mathcal{D}^{-1}{}^{A}{}_{B} \left(\left(\frac{1}{1+z}u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu}u_{\mathcal{O}}^{\nu} \right) + w_{\mathcal{O}}^{A}$$

$$\delta_{\mathcal{O}}r = \gamma\beta_{\perp}\frac{c}{D_{\mathcal{O}}}$$

Apparent superluminal motions

Apparent superluminal motions in ultra-relativistic jets

M87, apparent transverse velocity $v_{\perp} \approx 6c$

M87 jet Credits: NASA and the Hubble Heritage Team (STScI/AURA)

Lensing and position drift

$$\delta_{\mathcal{O}} r^{A} = (u^{\mu}_{\mathcal{O}} l_{\mathcal{O}\mu})^{-1} \mathcal{D}^{-1^{A}}{}_{\mathcal{B}} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u^{\nu}_{\mathcal{O}} \right) + w^{A}_{\mathcal{O}}$$

Lensing by a point source, thin lens approximation

Lensing and position drift

$$\delta_{\mathcal{O}} r^{A} = (u^{\mu}_{\mathcal{O}} l_{\mathcal{O}\mu})^{-1} \mathcal{D}^{-1^{A}}{}_{\mathcal{B}} \left(\left(\frac{1}{1+z} u_{\mathcal{C}} - \hat{u}_{\mathcal{O}} \right)^{B} - m^{B}{}_{\nu} u^{\nu}_{\mathcal{O}} \right) + w^{A}_{\mathcal{O}}$$

Lensing by a point source, thin lens approximation

many expressions possible

$$\ln(1+z) = \ln\left(l_{\mathscr{C}\mu} u_{\mathscr{C}}^{\mu}\right) - \ln\left(l_{\mathscr{O}\mu} u_{\mathscr{O}}^{\mu}\right) \quad \left| \nabla_{X} u_{\mathscr{O}}^{\mu} \right| = \ln\left(l_{\mathscr{C}\mu} u_{\mathscr{O}}^{\mu}\right) = \ln\left(l_{\mathscr{C}\mu} u_{\mathscr{O}}^{\mu}\right)$$

many expressions possible

$$\ln(1+z) = \ln\left(l_{\mathscr{C}\mu}u_{\mathscr{C}}^{\mu}\right) - \ln\left(l_{\mathscr{O}\mu}u_{\mathscr{O}}^{\mu}\right) \quad \left| \nabla_{X} \right|$$
$$\nabla_{\mathcal{L}}\ln(1+z) - \Xi_{\mathcal{L}} + \Xi_{\mathcal{L}} + \frac{1}{2\pi} \int_{-\infty}^{\lambda_{\mathscr{C}}} R = l^{\mu}\hat{u}^{\nu}$$

$$\nabla_X \ln(1+z) = \Xi_{Doppler} + \Xi_{Shklovskii} + \frac{1}{l_{\mathscr{C}_{\nu}} u_{\mathscr{C}}^{\nu}} \int_{\lambda_{\mathscr{C}}}^{\lambda_{\mathscr{C}}} R_{\mu\nu\alpha\beta} l^{\mu} \hat{u}_{\mathscr{C}}^{\nu} l^{\alpha} X^{\beta} d\lambda$$

many expressions possible

$$\ln(1+z) = \ln\left(l_{\mathscr{C}\mu} u_{\mathscr{C}}^{\mu}\right) - \ln\left(l_{\mathscr{O}\mu} u_{\mathscr{O}}^{\mu}\right) \quad \nabla_{X}$$

$$\nabla_X \ln(1+z) = \Xi_{Doppler} + \Xi_{Shklovskii} + \frac{1}{l_{\mathscr{C}_{\nu}} u_{\mathscr{C}}^{\nu}} \int_{\lambda_{\mathscr{C}}}^{\lambda_{\mathscr{C}}} R_{\mu\nu\alpha\beta} l^{\mu} \hat{u}_{\mathscr{C}}^{\nu} l^{\alpha} X^{\beta} d\lambda$$

line-of-sight Doppler term (SR)

$$\Xi_{Doppler} = \frac{l_{\mathcal{O}\mu} w_{\mathcal{O}}^{\mu}}{l_{\mathcal{O}\nu} u_{\mathcal{O}}^{\nu}} - \frac{1}{1+z} \frac{l_{\mathcal{C}\mu} w_{\mathcal{C}}}{l_{\mathcal{C}\nu} u_{\mathcal{C}}^{\nu}}$$

many expressions possible

$$\ln(1+z) = \ln\left(l_{\mathscr{C}\mu} u_{\mathscr{C}}^{\mu}\right) - \ln\left(l_{\mathscr{O}\mu} u_{\mathscr{O}}^{\mu}\right) \quad \nabla_{X}$$

$$\nabla_X \ln(1+z) = \Xi_{Doppler} + \Xi_{Shklovskii} + \frac{1}{l_{\mathcal{E}\nu} u_{\mathcal{E}}^{\nu}} \int_{\lambda_0}^{\lambda_{\mathcal{E}}} R_{\mu\nu\alpha\beta} l^{\mu} \hat{u}_{\mathcal{E}}^{\nu} l^{\alpha} X^{\beta} d\lambda$$

line-of-sight Doppler term (SR)

$$\Xi_{Doppler} = \frac{l_{\mathcal{O}\mu} w_{\mathcal{O}}^{\mu}}{l_{\mathcal{O}\nu} u_{\mathcal{O}}^{\nu}} - \frac{1}{1+z} \frac{l_{\mathcal{E}\mu} w_{\mathcal{E}}}{l_{\mathcal{E}\nu} u_{\mathcal{E}}^{\nu}}$$

Generalized Shklovskii term (SR + GR)

$$\Xi_{Shklovskii} = \frac{\nabla_l X^A(\mathcal{O})}{l_{\mathcal{O}\nu} u_{\mathcal{O}}^{\nu}} \left(\frac{1}{1+z}\hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)_A$$

• line-of-sight Doppler term

$$\begin{split} \Xi_{Doppler} &= \left(\frac{1}{(1+z)^2}\hat{w}_{\mathscr{C}} - w_{\mathscr{O}}^{\mu}\right)\frac{l_{\mathscr{O}\mu}}{l_{\mathscr{O}\nu}u_{\mathscr{O}}^{\nu}}\\ \Xi_{Doppler} &= \frac{1}{1+z}s_{\mu}w_{\mathscr{C}}^{\mu} - r_{\mu}w_{\mathscr{O}}^{\mu} \end{split}$$

Variation of relative radial velocity

Variation of the line-of-sight Doppler effect

Pure SR effect, no curvature

• Generalized Shklovskii term

$$\begin{split} \Xi_{Shklovskii} &= \left(\delta_{\mathcal{O}} r^{A} - w_{\mathcal{O}}^{A}\right) \, \left(\frac{1}{1+z} \hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)_{A} \\ \Xi_{Shklovskii} &= \left(l_{\mathcal{O}\nu} \, u_{\mathcal{O}}^{\nu}\right)^{-1} \, \mathcal{D}^{-1}{}_{AB} \left(\left(\frac{1}{1+z} \hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)^{A} - m_{\ \mu}^{A} \, u_{\mathcal{O}}^{\mu}\right) \, \left(\frac{1}{1+z} \hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)^{B} \end{split}$$

• Generalized Shklovskii term

$$\begin{split} &\Xi_{Shklovskii} = \left(\delta_{\mathcal{O}} r^{A} - w_{\mathcal{O}}^{A}\right) \, \left(\frac{1}{1+z}\hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)_{A} \\ &\Xi_{Shklovskii} = \left(l_{\mathcal{O}\nu} \, u_{\mathcal{O}}^{\nu}\right)^{-1} \, \mathcal{D}^{-1}{}_{AB} \left(\left(\frac{1}{1+z}\hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)^{A} - m_{\ \mu}^{A} \, u_{\mathcal{O}}^{\mu}\right) \, \left(\frac{1}{1+z}\hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)^{B} \end{split}$$

flat spacetime

$$\Xi_{Shklovskii} = \frac{1}{D_{\mathcal{O}}} \left(\frac{1}{1+z} u_{\mathcal{C}} - u_{\mathcal{O}} \right)_{A} \left(\frac{1}{1+z} u_{\mathcal{C}} - u_{\mathcal{O}} \right)^{A} = D_{\mathcal{O}}(\delta_{\mathcal{O}} r^{A} - w_{\mathcal{O}}^{A}) \left(\delta_{\mathcal{O}} r_{A} - w_{\mathcal{O}A} \right)$$

• Generalized Shklovskii term

$$\begin{split} &\Xi_{Shklovskii} = \left(\delta_{\mathcal{O}} r^{A} - w_{\mathcal{O}}^{A}\right) \, \left(\frac{1}{1+z}\hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)_{A} \\ &\Xi_{Shklovskii} = \left(l_{\mathcal{O}\nu} \, u_{\mathcal{O}}^{\nu}\right)^{-1} \mathcal{D}^{-1}_{AB} \left(\left(\frac{1}{1+z}\hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)^{A} - m_{\ \mu}^{A} \, u_{\mathcal{O}}^{\mu}\right) \, \left(\frac{1}{1+z}\hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)^{B} \end{split}$$

flat spacetime

• Generalized Shklovskii term

$$\begin{split} &\Xi_{Shklovskii} = \left(\delta_{\mathcal{O}} r^{A} - w_{\mathcal{O}}^{A}\right) \, \left(\frac{1}{1+z}\hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)_{A} \\ &\Xi_{Shklovskii} = \left(l_{\mathcal{O}\nu} \, u_{\mathcal{O}}^{\nu}\right)^{-1} \mathcal{D}^{-1}_{AB} \left(\left(\frac{1}{1+z}\hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)^{A} - m_{\ \mu}^{A} \, u_{\mathcal{O}}^{\mu}\right) \, \left(\frac{1}{1+z}\hat{u}_{\mathcal{C}} - u_{\mathcal{O}}\right)^{B} \end{split}$$

flat spacetime

SR effect with GR corrections

• Curvature term

$$\frac{1}{l_{\mathscr{C}_{\nu}} u_{\mathscr{C}}^{\nu}} \int_{\lambda_{\mathscr{C}}}^{\lambda_{\mathscr{C}}} R_{\mu\nu\alpha\beta} l^{\mu} \hat{u}_{\mathscr{C}}^{\nu} l^{\alpha} X^{\beta} d\lambda$$

$$X^{\mu} = \hat{u}_{\mathscr{O}}^{\mu} + e_{A}^{\mu} \left(\phi^{A} + m_{\nu}^{A} u_{\mathscr{O}}^{\nu} \right) + C \cdot l^{\mu}$$

$$\phi^{C}(\lambda) = \mathscr{D}_{A}^{C}(\lambda) \mathscr{D}^{-1}{}^{A}{}_{B}(\mathscr{C}) \left(\left(\frac{1}{1+z} u_{\mathscr{C}} - \hat{u}_{\mathscr{O}} \right)^{B} - \tilde{m}^{B} \right)$$

GR/curvature effect

It is possible to derive exact formulas for the position and redshift drift for any pair of observer/emitter in general relativity (geometric optics approximations)

It is possible to derive exact formulas for the position and redshift drift for any pair of observer/emitter in general relativity (geometric optics approximations)

Drift rates depend on the spacetime curvature along the LOS and kinematical variables:

$$\delta_{\mathcal{O}} r^{A} \equiv \delta_{\mathcal{O}} r^{A} \left(R^{\mu}_{\ \alpha\beta\nu} l^{\alpha} l^{\beta}, u^{\mu}_{\mathcal{O}}, u^{\mu}_{\mathcal{C}}, w^{\mu}_{\mathcal{O}} \right)$$
$$\delta_{\mathcal{O}} \ln(1+z) \equiv \delta_{\mathcal{O}} \ln(1+z) \left(R^{\mu}_{\ \alpha\beta\nu} l^{\alpha} l^{\beta}, u^{\mu}_{\mathcal{O}}, u^{\mu}_{\mathcal{C}}, w^{\mu}_{\mathcal{O}}, w^{\mu}_{\mathcal{C}} \right)$$

It is possible to derive exact formulas for the position and redshift drift for any pair of observer/emitter in general relativity (geometric optics approximations)

Drift rates depend on the spacetime curvature along the LOS and kinematical variables:

$$\delta_{\mathcal{O}} r^{A} \equiv \delta_{\mathcal{O}} r^{A} \left(R^{\mu}_{\ \alpha\beta\nu} l^{\alpha} l^{\beta}, u^{\mu}_{\mathcal{O}}, u^{\mu}_{\mathcal{E}}, w^{\mu}_{\mathcal{O}} \right)$$

$$\delta_{\mathcal{O}} \ln(1+z) \equiv \delta_{\mathcal{O}} \ln(1+z) \left(R^{\mu}_{\ \alpha\beta\nu} l^{\alpha} l^{\beta}, u^{\mu}_{\mathcal{O}}, u^{\mu}_{\mathcal{E}}, w^{\mu}_{\mathcal{O}}, w^{\mu}_{\mathcal{E}} \right)$$

General, non-perturbative relations between:

gravitational lensing and position drift

position drift and the redshift drift

It is possible to derive exact formulas for the position and redshift drift for any pair of observer/emitter in general relativity (geometric optics approximations)

Drift rates depend on the spacetime curvature along the LOS and kinematical variables:

$$\delta_{\mathcal{O}} r^{A} \equiv \delta_{\mathcal{O}} r^{A} \left(R^{\mu}_{\ \alpha\beta\nu} l^{\alpha} l^{\beta}, u^{\mu}_{\mathcal{O}}, u^{\mu}_{\mathcal{C}}, w^{\mu}_{\mathcal{O}} \right)$$

$$\delta_{\mathcal{O}} \ln(1+z) \equiv \delta_{\mathcal{O}} \ln(1+z) \left(R^{\mu}_{\ \alpha\beta\nu} l^{\alpha} l^{\beta}, u^{\mu}_{\mathcal{O}}, u^{\mu}_{\mathcal{C}}, w^{\mu}_{\mathcal{O}}, w^{\mu}_{\mathcal{C}} \right)$$

General, non-perturbative relations between:

gravitational lensing and position drift

position drift and the redshift drift

- M. K., J. Kopiński, "Optical drift effects in general relativity", JCAP 03 (2018) 012
- M. Grasso, M. K., J. Serbenta, *"Geometric optics in general relativity using bilocal operators",* Phys. Rev. D **99**, 064038 (2019)

 $\chi_{\mathcal{E}}$

It is possible to derive exact formulas for the position and redshift drift for any pair of observer/emitter in general relativity (geometric optics approximations)

Drift rates depend on the spacetime curvature along the LOS and kinematical variables:

$$\delta_{\mathcal{O}} r^{A} \equiv \delta_{\mathcal{O}} r^{A} \left(R^{\mu}_{\ \alpha\beta\nu} l^{\alpha} l^{\beta}, u^{\mu}_{\mathcal{O}}, u^{\mu}_{\mathcal{C}}, w^{\mu}_{\mathcal{O}} \right)$$

$$\delta_{\mathcal{O}} \ln(1+z) \equiv \delta_{\mathcal{O}} \ln(1+z) \left(R^{\mu}_{\ \alpha\beta\nu} l^{\alpha} l^{\beta}, u^{\mu}_{\mathcal{O}}, u^{\mu}_{\mathcal{C}}, w^{\mu}_{\mathcal{O}}, w^{\mu}_{\mathcal{C}} \right)$$

General, non-perturbative relations between:

gravitational lensing and position drift

position drift and the redshift drift

Thank you!

- M. K., J. Kopiński, "Optical drift effects in general relativity", JCAP 03 (2018) 012
- M. Grasso, M. K., J. Serbenta, *"Geometric optics in general relativity using bilocal operators",* Phys. Rev. D **99**, 064038 (2019)

Position and redshift drifts

Exact expressions for drifts - what are they good for?

Sachs formalism for distance measures, image distortions etc.

Limited to momentary observations

Extending the Sachs approach to time variations of observables

Position and redshift drifts

Exact expressions for drifts - what are they good for?

Sachs formalism for distance measures, image distortions etc.

Limited to momentary observations

Extending the Sachs approach to time variations of observables

Properties

- Exact geometric relations. All GR effects automatically involved
- Most general expressions possible many applications (cosmology, astrometry, pulsar timing...)
- Expressions in terms of kinematical variables (measured wrt local inertial frames at & and Ø) and geometry along the line of sight (curvature tensor). Complicated dependence on kinematics separated from the dependence on spacetime geometry
- Starting point for various approximation schemes, useful in numeric [Grasso, Villa, MK 2021]
- Interesting physical consequences (lensing position drift relation, redshift drift position drift relation)
- Assumptions: point source, geometric optics, & not at a caustic
- Main tool: 1st order geodesic deviation equation along a null geodesic

