EXPLORING GRAVITATIONALLY-LENSED Z $\gtrsim 6$ X-RAY AGN BEHIND THE RELICS CLUSTERS

ÁKOS BOGDÁN¹, **ORSOLYA E. KOVÁCS^{2,1}**, CHRISTINE JONES¹, WILLIAM R. FORMAN¹, RALPH P. KRAFT¹, VICTORIA STRAIT³, DAN COE⁴, AND MARUŠA BRADAČ³ ¹Harvard Smithsonian Center for Astrophysics, MA, USA, ²Masaryk University, Brno, Czech Republic, ³Department of Physics, University of California, CA, USA ⁴Space Telescope Science Institute, MD, USA

АрЈ, 2022

BH formation scenarios

- **deep optical surveys**: >200 bright quasars at $z > 6 \rightarrow$

- accretion-powered black holes in the center of galaxies (BHs) already exist ~1 billion years after the Big Bang
- $10^9 \,\mathrm{M}_{\odot}$ (this is the high-end tail of BH mass distribution)
- rapid assembly

- various seeding models explain the origin of BHs

- "light seed" scenario (low-mass BH seeds)
 - collapse of Population III stars \rightarrow BH seeds with $10 100 \, \text{M}_{\odot}$
 - rapid growth via accretion /mergers within 1 billion years
- "heavy seed" scenario (massive BH seeds)
 - direct collapse of massive gas clouds \rightarrow BH seeds with $10^4-10^5\,M_{\odot}\,BH$

- episodic accretion

- aim of this study: constraining the formation scenarios of BHs

Constraining formation scenarios

- main (X-ray) observational differences: luminosity (this work), accretion density, number of BH seeds (occupation fraction)

- observations of BHs at the "cosmic dawn" is demanding for present-generation X-ray observatories due to the

- low luminosity of BHs
- low sensitivity of telescopes

Previous X-ray studies

- X-ray follow-up observations of optically-identified quasars with Chandra

- $z \sim 6$ AGN from the high-end tail ($\sim 10^9 \text{ M}_{\odot}$) of BH mass distribution
- these AGN are not representative

- Chandra Deep Field South

- average properties of medium-redshift (z = 2 5) AGN
- most notable: Vito et al. 2016, stacking $\rightarrow z \approx 4 5$ AGN detection, but no $z \approx 6$ (only upper limit)

- Gravitational lensing in X-ray

- Cluster Lensing And Supernova survey with Hubble (CLASH) clusters
- individual AGN detections at z = 2.8 5, but not at $z \approx 6$

This study

- gravitational lensing on X-ray data to magnify fainter AGN
- lensing objects: galaxy clusters
 - magnification of background galaxies
 - no magnifying effect on foreground objects (cluster emission, sky & instrumental background)
- 1st approach: search for individual AGN in background galaxies with amplified signal
- 2nd approach: stacking the amplified signal to further boost signal-to-noise ratios & to probe average characteristics of BHs
- data used in this study:
 - Chandra images
 - HST & Spitzer catalog of lensed galaxies identified in the RELICS survey (from Salmon et al. 2020)

RELICS clusters & background galaxies

- imaging of strongly lensed fields i.e. of 41 galaxy clusters
- cluster redshifts: z = 0.18 0.97
- science topics: high-redshift galaxies, AGN etc.

- high-resolution Chandra observations of 35 RELICS clusters
- El Gordo (ACT-CLJ0102-49151) cluster excluded from our cluster sample due to its extremely bright ICM
- galaxy sample consists of lensed galaxies behind the remaining 34 galaxy clusters
 - 174 HST&Spitzer-identified galaxies with redshifts of 6 < z < 8 behind the 34 clusters (Strait et al. 2021)
 - SED fitting of HST & Spitzer fluxes \rightarrow physical characteristics of the galaxies
 - (photometric redshift, stellar mass, star formation rate etc.) (Strait et al. 2021)
 - based on photometric redshift, 19 low-redshift galaxies were excluded from the sample
 - final galaxy sample: 155 $z \approx 6$ galaxies
 - lensing magnification (μ) at the location of the galaxies from cluster lensing magnification maps from Strait et al. 2021

 $-\mu = 1 - 95$

Chandra analysis

- data were obtained from public archive
- 105 high-resolution ACIS-I & ACIS-S imaging observations taken between 2000-2019
- total exposure time is 3.53 Ms
- analysis with standard CIAO tools
- image extraction in the broad, soft, and hard band (0.5 7 keV, 0.5 1.2 keV, 2 7 keV, respectively)
- images and exposure maps of clusters observed in multiple pointings were merged

Results, individual detections

1. source detection with CIAO wavdetect (this detects mainly low-redshift AGN)

- 2. cross-correlation of the X-ray source list with the HST galaxy positions
 - differences in astrometric accuracy between Chandra and HST (Liu et al. 2021, largest offset < 0.8'')
 - broader Chandra point spread function at the edges of the detector

- search radius: 2.5"

- results: two X-ray point sources in the proximity of lensed galaxies:

- match #1 in cluster MACS0553-33
 - offset: 2.1"
 - $L_{\rm X}$ assuming the distance of the galaxy (z = 6.55): 4.6 × 10⁴³ erg s⁻¹
- match #2 in cluster PLCKG237+32
 - offset: 1.7"
 - $L_{\rm X}$ assuming the distance of the galaxy (z = 7.82): 3.5×10^{44} erg s⁻¹
- chance coincidence?

- Monte Carlo simulations \rightarrow we expect ≈ 0.23 random matches in our sample \rightarrow one or even two X-ray sources are associated with a high-redshift galaxy

- major caveat: relatively large projected offsets (11.7 kpc & 8.5 kpc at the redshift of corresponding galaxy) > half-light radius of typical galaxies at $z \sim 6$

Results, individual detections

The potential matches between the X-ray sources and high-redshift AGN for MACS0553-33 (top panel) and PLCKG287+32 (bottom panel). The left panels show the 0.5 - 7 keV band Chandra images and the right panels show the multi-color HST images of the regions around the sources. The images are centered on the X-ra ysources (black solid circle) that are in the vicinity of galaxies at z = 6.55 and z = 7.82 (dashed green circles). The projected distances between the centroids of the X-ray point sources and the high-redshift galaxies are 2.1'' and 1.7'' for the source in MACS0553-33 and PLCKG287+32, respectively. However, due to the relatively large projected distance, the X-ray sources are unlikely to be associated with the high-redshift galaxies.

Results, stacking the high-redshift galaxies

- analysis steps:

1. source exclusion

- 2. cutout images and exposure maps around each galaxy
- 3. stacking the cutout images and exposure maps \rightarrow increased signal-to-noise ratios & detection likelihood
- 4. magnification correction on net count rates

- multiple approaches of stacking:

- 1. stacking all 155 galaxies together
- 2. stacking the subsample of low- (< 4 M_{\odot} yr⁻¹) and high-SFR (> 4 M_{\odot} yr⁻¹) galaxies separately
- 3. low- $(\log \mu < 0.5)$ and high-lensing-magnification $(\log \mu > 0.5)$ galaxies
- 4. low- $(M_{\star} < 4 \times 10^8 \,\mathrm{M_{\odot}})$ and high-stellar-mass $(M_{\star} > 4 \times 10^8 \,\mathrm{M_{\odot}})$ galaxies

- result: weak (2.2σ) detection only in the high-mass sample

- Jackknife resampling confirms the detection \rightarrow only $\sim 0.3\%$ of the random resampling simulations show $\geq 2.2\sigma$ detections.

Results, stacking the high-redshift galaxies

Stacked 0.5 - 7 keV band Chandra images of lensed high-redshift galaxies using stellar mass as binning criteria. We obtained a weak, 2.2σ detection for the high-mass sub-sample, while other sub-samples remained undetected.

Constraining the properties of $z \sim 6$ BHs

- constraints from the stack of all 155 galaxies:

- estimating the BH mass using two approaches:

- 1. luminosity upper limit $L_{0.5-7 \text{ keV}} \lesssim 8.4 \times 10^{41} \text{ergs}^{-1} \rightarrow \text{ in case of accretion at Eddington rate the mean BH mass of the sample is <math>< 6.7 \times 10^4 \text{ M}_{\odot}$
- 2. mean stellar mass of the galaxy sample is $1.3 \times 10^9 \,\text{M}_{\odot} \rightarrow \text{BH}$ mass-stellar bulge mass scaling relation (Schutte et al. 2019) $\rightarrow 2.6 \times 10^6 \,\text{M}_{\odot}$ for the mean BH mass $\rightarrow 40$ times larger

- possible explanations:

- the scaling relation only valid locally, and high-redshift BHs are much less massive
 - this explanation is incompatible with some observational studies, e.g.
 - Merloni et al 2010: high-redshift BHs may be over-massive relative to their host galaxies
 - Bogdán et al. 2012: some high-redshift BHs may grow faster than their host galaxies
- BHs accrete at a few per cent of their Eddington rate \rightarrow
 - low mean accretion rate supports the "heavy seed" scenario: BHs may experience episodic periods with high accretion rates, while most times they accrete at low Eddington rates

Summary

- Chandra analysis of 155 high-redshift ($z \approx 6$) gravitationallylensed galaxies identified by Hubble behind 34 RELICS clusters
- probing the X-ray emission both individually and in stacks
- search for individual high-redshift AGN revealed two X-ray source-high-redshift galaxy pairs, but due to their large offset, Xray sources are not likely associated with a high-redshift galaxy
- stack of 155 high-redshift galaxies resulted in non-detection → upper limit on luminosity and BH mass
- the upper limit on the luminosity implies that typical highredshift BHs accrete at a few per cent of their Eddington rate
- splitting the sample based on stellar mass, SFR, and lensing magnification
- stack of massive galaxies resulted in a 2.2σ detection, other subsamples remained undetected

Future studies

- high-redshift galaxies behind Hubble Frontier Field clusters
- high-redshift galaxies behind Abell 2744, which is a JWST target in its early release science program + 2.1 Ms Chandra VLP project (PI: Ákos Bogdán, me: Co-I)